Stochastic Image Models from SIFT-Like Descriptors
نویسندگان
چکیده
منابع مشابه
SIFT Keypoint Descriptors for Range Image Analysis
This paper presents work in progress to extend the two-dimensional (2D) Scale Invariant Feature Transform (SIFT) to a 2.5 dimensional (2.5D) domain. Robust feature descriptors are extracted from range images of human faces and the form of these descriptors are analogous to the structure of Lowe’s 2D SIFT, in which the descriptors comprise a local distribution function of the image gradient orie...
متن کاملRobust Image Matching with Selected SIFT Descriptors
A robust image matching algorithm using a set of selected SIFT descriptors is investigated in this work. We first utilize the colorbased segmentation method and the watershed algorithm to separate foreground and background regions in images and then search the corresponding SIFT descriptors along foreground contours. These selected SIFT descriptors can offer more robust and stable image matchin...
متن کاملApplying SIFT Descriptors to Stellar Image Matching
Stellar image matching allows to verify if a given pair of images belongs to the same stellar object/area, or knowing that they correspond to the same sky area, to verify if there are some changes between them due to an stellar event (supernova event, changes in the object position, etc). Some applications are stellar photometry, telescope tracking and pointing, robot telescopes, and sky monito...
متن کاملImage Classification with Max-sift Descriptors
In the conventional Bag-of-Features (BoF) model for image classification, handcrafted descriptors such as SIFT are used for local patch description. Since SIFT is not flipping invariant, left-right flipping operation on images might harm the classification accuracy. To deal with, some algorithms augmented the training and testing datasets with flipped image copies. These models produce better c...
متن کاملAttributed Graph Matching for Image-Features Association Using SIFT Descriptors
Image-features matching based on SIFT descriptors is subject to the misplacement of certain matches due to the local nature of the SIFT representations. Some well-known outlier rejectors aim to remove those misplaced matches by imposing geometrical consistency. We present two graph matching approaches (one continuous and one discrete) aimed at the matching of SIFT features in a geometrically co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Imaging Sciences
سال: 2018
ISSN: 1936-4954
DOI: 10.1137/18m116592x